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Two novel fluorene derivatives having cationic substituents
were synthesized. Two-photon absorption (TPA) properties of
the derivatives were evaluated using the fluorescence-based
technique with a femtosecond pulse emitted from a Ti:sapphire
laser. Maximum TPA cross-sections of the compounds were es-
timated from the TPA spectra. TPA cross-sections of compounds
with cationic substituents were found to be significantly larger
than those of the compounds without cationic substituents.

Rapid growth in the interest in molecular two-photon ab-
sorption (TPA) in recent years1 has brought a new reality to
the variety of photonic and biological applications such as 3D-
microfabrication,2 optical power limiting,3,4 optical data stor-
age,5 two-photon-excited fluorescence imaging,6 and two-pho-
ton photodynamic therapy.7 However, the TPA characteristics
of organic materials developed up until now still need to be im-
proved in order to fulfill the requirements of practical applica-
tions. The design principle for a molecule with a large TPA
cross-section (�ð2Þ) at a required wavelength remains to be fully
developed. The complete understanding of the structure-proper-
ty relationship of organic TPA materials is of great importance.

It is noteworthy that a simple D-p-A molecule with a large
molecular hyperpolarizability (�) tends to exhibits a large
�ð2Þ.8,9 Furthermore, large � values have been reported in ionic
molecules.10,11 This finding suggests that an ionic molecule is
capable of exhibiting a large �ð2Þ. Several ionic molecules exhib-
iting large �ð2Þ’s have been reported.3,12,13 In this study, fluorene
derivatives with ionic substituent, 1-ethyl-4-[2-(7-diphenylami-
no-9,9-diethyl -9H-fluorene-2-yl)-2,1-ethenediyl ]-pyridinium
inium perchlorate (2) and 1,10-diethyl-4,40-(9,9-diethyl-2,7-fluo-
renediyl-2,1-ethenediyl)dipyridinium perchlorate (4) were pre-
pared by methyl iodide methylation of the parent compounds
N,N -diphenyl-7-[2-(4-pyridinyl)ethenyl]-9,9-diethyl-9H -fluo-
rene-2-amine (1) and 4,40-(9,9-diethyl-2,7-fluorenediyl-2,1-
ethenediyl)bis-pyridine (3), respectively (Figure 1). We ob-
served a significant enhancement of the �ð2Þ values of the ionic
molecules.

The TPA cross-sections of 1–4 were estimated by fluores-
cence-based technique.14 This technique is known to provide
an accurate value of TPA cross-section with simple analysis.14

One can estimate a TPA cross-section by comparing the linear
and two-photon induced fluorescence spectra with those of a ref-
erence compound. Rhodamine B is commonly used as a refer-
ence compound, though two different values of TPA cross-sec-
tions at the same wavelength region between 800–850 nm
were reported.14 We adopted the lower values among them as
the references because of avoiding overestimations of TPA
cross-sections. A pulsed beam from a Ti:sapphire laser was used

for excitation. The typical pulse duration, maximum pulse ener-
gy and repetitive rate were 125 fs, 10 nJ and 82MHz, respective-
ly. Quadratic dependencies of the fluorescence intensities on the
incident laser power were determined for all the measurements.
In addition, we confirmed that the results estimated by our exper-
imental setup are consistent with those obtained by Z-Scan tech-
nique making use of the identical light source.

TPA induced fluorescence spectra, which were taken for 1–3
in 10�3 M chloroform solution and for 4 in 10�3 Mmethanol so-
lution, are shown in Figure 2. The maximum values for the �ð2Þ’s
and the two-photon absorption spectra (� ð2Þ

max) are summarized
in Table 1 together with the maximum values for the molar ab-
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Figure 1. Fluorene derivatives studied.
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sorption coefficient ("max), the maximum wavelengths of the lin-
ear absorption spectra (� ð1Þ

max), and the fluorescence spectra
(� emission) in 10�5–10�6 M solution. It is well known that the
use of a high concentration solution causes concentration
quenching of the fluorescence intensity, however, we can obtain
more accurate TPA cross-section values in concentrated solution
rather than dilute one. A large error is often included in the mea-
surement of TPA cross-section in dilute solution owing to the
quite low signal intensity of TPA induced fluorescence. In fact,
a high concentration solution was widely used for estimation of
TPA cross-section. Therefore, we employed the solution with a
high concentration, i.e. 10�3 M.

As shown in Table 1, the �ð2Þ value of 2, which was derived
from 1, was only about three times that of 1, while the �ð2Þ value
of 4 was more than sixty times that of 3. The experimental setup
used in this study enabled us to measure the TPA spectra over a
wavelength range of 700 to 980 nm. In view of the relationship
between the � ð1Þ

max and � ð2Þ
max values (Table 1), it seems im-

probable that compound 3 exhibits a much larger �ð2Þ value at
wavelengths shorter than 700 nm. As for 3, "max and � ð1Þ

max

were taken also in methanol. The values of 6:9� 104 dm3

mol�1 cm�1 for "max and 376 nm for � ð1Þ
max indicate less contri-

bution of solvent dependency to the electronic state of com-
pound 3. Therefore, the �ð2Þ value of 3 in chloroform should
be quite similar to that in methanol.

The three-state model of two-photon absorption teaches us
that �ð2Þ is proportional to the square of the transition moment,
and the reciprocal of the transition energy of the linear absorp-
tion9 and detuning energy.15 For each of 2 and 4 in Table 1,
the decrease in transition energy was observed as a bathochro-
mic shift of the � ð1Þ

max on introducing a cationic substituent.
This change is in accordance with large �ð2Þ of 2 and 4. In addi-
tion, "max, which is proportional to a transition moment, increas-
ed on introduction of a cationic substituent on 3 leading to 4,
while "max’s of 2 is rather smaller than that of 1. More important-

ly, the reduction of detuning energy is more significant when cat-
ionic substituents are introduced on 3 leading to 4 than that on 1
to 2. Those differences coincide with the much larger increase in
�ð2Þ observed on going from 3 to 4 than that from 1 to 2. Al-
though it is still difficult to predict the detuning energy of a given
compound precisely, it might be possible to design a prominent
TPA material by reducing the detuning energy.

In summary, significant enhancement of �ð2Þ was observed
when a cationic substituent was introduced into the fluorene de-
rivatives. In order to confirm the effectiveness of ionic substitu-
ents towards enhancing the molecular �ð2Þ’s, further measure-
ments of �ð2Þ’s for a variety of organic ionic molecules,
derived from a number of different molecular backbones is cur-
rently underway.
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Figure 2. The TPA spectra of 1–4. 1GM ¼ 1� 10�50 cm4

s/photon.

Table 1. The TPA cross-sections and the related characteristics of 1–4

Compound "max � ð1Þ
max �emission �ð2Þ � ð2Þ

max Detuning Energy
/dm3 mol�1 cm�1 /nm /nm /GM /nm /eV

1 4:3� 104 396 501 124 820 1.62
2 3:4� 104 453 669 438 980 1.47
3 7:1� 104 378 418 6 760 1.71
4 7:8� 104 432 529 400 740 1.19
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